Thursday, December 16, 2004

The Platonic Form Of Stalactites

Stalactites in the Big Room of Kartchner Caverns State Park,
Benson, Ariz. (Photo: Noelle Wilson
No matter whether they're big, little, long, short, skinny or fat -- classic stalactites have the same singular shape.

Almost everyone knows that stalactites, formations that hang from the roof of caves, are generally long, slender and pointy. But the uniqueness of their form had gone unrecognized.

"There's only one shape that all stalactites tend to be. The difference is one of magnification -- it's either big or it's small, but it's still the same shape," said researcher Martin Short of the University of Arizona in Tucson.

Short and his colleagues have developed a mathematical theory that explains how stalactites get their shape.

"It's an ideal shape in nature and in mathematics that had not been known before," said Raymond Goldstein, a UA physics professor and senior author on the research report. "The Greek philosopher Plato had the concept that there are ideal forms underlying what we see in nature. Although any particular stalactite may have some bumps and ridges that deform it, one might say that within all stalactites is a idealized form trying to get out."

Thursday, December 16, 2004

The Platonic Form Of Stalactites

Stalactites in the Big Room of Kartchner Caverns State Park,
Benson, Ariz. (Photo: Noelle Wilson
No matter whether they're big, little, long, short, skinny or fat -- classic stalactites have the same singular shape.

Almost everyone knows that stalactites, formations that hang from the roof of caves, are generally long, slender and pointy. But the uniqueness of their form had gone unrecognized.

"There's only one shape that all stalactites tend to be. The difference is one of magnification -- it's either big or it's small, but it's still the same shape," said researcher Martin Short of the University of Arizona in Tucson.

Short and his colleagues have developed a mathematical theory that explains how stalactites get their shape.

"It's an ideal shape in nature and in mathematics that had not been known before," said Raymond Goldstein, a UA physics professor and senior author on the research report. "The Greek philosopher Plato had the concept that there are ideal forms underlying what we see in nature. Although any particular stalactite may have some bumps and ridges that deform it, one might say that within all stalactites is a idealized form trying to get out."