Survey Instruments: Digital or manual? A field comparison of relative accuracy and practicality of usage.

Scale 1 = 00

Aaron J. Bird¹ Rachel F. Bosch² David A. Riggs³ Lynn Brucker⁴

1. Oakland University, 2200 Squirrel Rd., RM 363 Hannah Hall, Rochester, MI 48309, <u>bird2@oakland.edu</u> 2. 1269 Woodfield St., Lake Orion, MI 48362, <u>rachel.bosch@gmail.com</u> 3. 637 Afton St., Morgantown, WV 26505, <u>driggs@speleo.us</u> 4. Cave Research Foundation lynn.brucker@sbcglobal.net

Measuring Distance

Survey Tapes Graduated in Tenths of Feet

.5 1001.6 7 9 .8 1 ▲5 FIBER 6 GLASS 7 -8METALL NON 3 OFT **Digital Laser Measurement Device** CLEAR 2008 NSS Convention - Lake City, FL, USA

Survey Computer

- Recording the data
- Crunching the data
- Sketching the cave

2008 NSS Convention - Lake City, FL, USA

ATCH HERE FIRS

Why use digital survey tools?

- Reduce or eliminate blunders
- Increase accuracy of survey data
- Increase repeatability of data
- Make surveying process easier
- Make surveying process faster

Common blunders during the survey trip

Compiled by Bob Hoke and Pat Kambesis Compass & Tape(V17n4i60p17)

- Reading wrong side of survey tape for tapes with different graduations on either side
- Reading wrong direction in compass, called "Decade Inversion"
- Magnetic effects
- Communication problems
- Recording errors
 2008 NSS Convention Lake City, FL, USA

Common blunders ...

- Reading wrong side of survey tape for tapes with different graduations on either side
 - Disto readout set for feet in tenths
 - Reading wrong direction in compass, called "Decade Inversion"
 - TruPulse or Attack Pony displays azimuth in degrees
 - Magnetic effects

۲

- Got to minimize them no matter what device is used
- **Communication problems**
 - Be nice, be polite, be patient. 😊
- Recording errors
 - Can happen with/without digital devices
 - Using BlueTooth where data automatically uploaded to computer

Mark Passerby: "Suggested equipment for ICDS"

Some Background on In-Cave Digital Survey

- Mark Passerby (Caves.Com Magazine, 2003): "Perhaps nothing is changing faster in caving than the surveying process."
 - Reviewed Disto Laser Measure and concluded it was a very functional device. (Many surveyors use Distos and other laser measuring tools today.)
 - Reviewed CheckPoint Inclo-Matic concluding it was a very good tool. (Many devices are available today.)
 - Reviewed Bushnell digital compass with conclusion that, "...digital compasses aren't there yet."

Now... fast forward to 2008, Online Survey Results

- Online survey conducted from July 18 August 2008
- A total of 52 respondents
- Most use Suuntos
- Most use Disto (laser range finders)
- Many believe digital tools are ready for incave use
- Excepting laser range finders, few actually use digital survey tools

Process for Using Digital Survey Tools Differs from that of Traditional Sighting Instruments

- Calibrate to known standard azimuths and inclinations
- Prepare the instrument for the cave environment
 - Waterproof, impact proof cases
 - Extra batteries
 - Targets

 Collect data according to proper use of instrument

- Data collection is not necessarily like using Suuntos

Calibration: Suuntos?

- Traditional cave surveying instruments can be "corrected" (Andreatta, 2005).
 - The instruments, and their readers, do require checking for accuracy using known survey stations and possible adjustment by a correction factor
 - Goal is frontsight/backsight agreement of +/- 1 degree
 - Dasher (1995): "...probable that more error will creep into the survey from instruments' users inability to accurately shoot the instrument..."
 - Andreatta (2005): "Assuming no major blunders, the largest source of error is instrument error."

Calibration: Digital

- Digital instruments do require calibration
- TruPulse 360 calibration procedure takes ~1 minute and can be done anywhere, provided magnetic north is known within +/- 17 degrees (LaserTechnology, 2007)
- Shetland Attack Pony calibration procedure (Underwood, 2007) takes up to 2 hours or as little as 30 minutes, has been done in a cave (Brucker, 2008), must be done free from magnetic or EMF interference

TruPulse Calibration Procedure

- Turn on instrument
- Cycle menu to calibration
- Take 8 shots according to calibration process
- Wait for "PASS" or "FAIL"
- If PASS, use instrument
- Takes ~ 1 minute for a practiced user
 - ~3 minutes for an unpracticed user

Pony Calibration Procedure

- From the manufacturer (Underwood, 2007)
 - Set Pony to "Raw" data collection
 - Run the calibration course with Suuntos or other instruments to determine "Truth" shots
 - Collect data with Pony in four orientations

Pony at FROM station

Evaluating Effectiveness of Device after Calibration

- Goal: +/- 1 Degree (CRF Field Handbook; Andreatta, C&Tv17n1i57p20, 2005)
- Achieved in some tests at the Cave Research Foundation Frontsight/Backsight course at Hamilton Valley Fieldstation
- Achieved multiple times in backyard
 - calibration course in Lake Orion

|--|

CRF Hamilton Valley Fieldstation, 07/25/08

	Azim	uth	Inclir	nation
	Frontsight	Backsight	Frontsight	Backsight
Pony	128	309	0	0
Suunto	129	308	0	0

	Lake Orion,	MI, 07/31/0	8
Azim	uth	Inclin	ation
Frontsight	Backsight	Frontsight	Backsight

Pony 294 114 0 -1

Lake Orion, MI, 08/04/08

Inclination

Azimuth		
Azimuti		

	Frontsight	Backsight	Frontsight	Backsight
Pony	294	115	0	-1
Suunto	294	114	0	-1

Field Testing

- Dogwood Cave, KY
- Roppel Cave, KY
- Whigpistle Cave, KY (no shots taken, "survivability exam 1")
- Martin Ridge Cave, KY (shots taken, "survivability exam 2")
- Windy Slope Cave, WV (shots taken, "survivability exam 3")
- Colossal Cave, KY

CRF Hamilton Valley Fieldstation, 06/15/2008

	Suu	nto	TruP	ulse	S/	AP	Azimut	h > 1º	Inclinat	ion > 1º
STA	AZI	INC	AZI	INC	AZI	INC	Suunto - TruPulse	Suunto - SAP	Suunto - TruPulse	Suunto - SAP
0 to 1	144	9.5	144	9.4	144	9				
0 to 2	126	1.5	126.3	1.6	126	1				
0 to 3	121	10	119.7	9.9	120	10	1.3			
0 to 4	73	19	72.6	19.1	73	19				
0 to 5	357	-6.5	356.7	-7.7	356	-7			1.2	
0 to 6	337.5	12.5	336.5	11.4	336	11		1.5	1.1	
0 to 7	301	6	300.2	5.9	300	6				
0 to 8	294	7.5	293.4	6.5	293	6				1.5
0 to 9	206.5	0	205.6	-0.9	206	0				
0 to 10	163	3	162.9	1.6	163	1			1.4	2
0 to 11	164	-9	162.8	-9.6	163	-9	1.2			
0 to 12	152.5	2	151	2.1	151	2	1.5	1.5		

38 < 1 degree, 10 > 1 degree, 0 > 2 degrees

Dogwood Cave, KY 06/16/2008

Instrument	AZI	INC
Suunto 1	321	-7
Suunto 2	324	-7
TruPulse 360 1	322.2	-6.5
TruPulse 360 2	322.2	-5.9
SAP 1	321	-7
SAP 2	321	-7

1 outlier? 2 > 1 degree, 0 > 2 degrees

Roppel Cave, KY 06/18/2008

	Frontsight		Backsight		
Instrument	AZI	INC	AZI	INC	
Suunto 1	327.5	0	147.5	0	
Suunto 2	327.5	0	151.5	-0.5	
SAP 1 (A&R)	328	-1	152	0	
SAP 2 (L&R)	327	-1	153	0	

5 < 1 degree, 3 outliers? Probably not... something going on here.

Martin Ridge Cave, KY 07/26/2008

Instrument	AZI	INC	AZI	INC
Suunto 1, AJB	41	+7	220	-7
Suunto 1, LAB	41	+7	221	-8
SAP, AJB	39	6	218	-8
SAP, LAB	39	6	218	-8

Windy Slope Cave, WV 08/02/2008 High-Angle Shots

Front (SA	sight AP)	Back (Suui	sight ntos)
AZI	INC	AZI	INC
125	-7	306.5	5
121	32	301	-31
117	41	297	-41
278	37	98	-36

3 < 1 degree, 1 = 1.5 degrees; 1 inclination = 2 degrees

Colossal Cave, Mammoth Cave, KY 08/02/08, no shots > 1 degree different

	Frontsight		Backsight		
	359	11	180	-11	
	306	11	127	-11	
	340	1	161	-1	
	25	0	204	0	
	357	0	177	0	
NSA	14	7	194	-7	
	319	-12	139	11	
City	158	-44	339	45	
ake	88	-5	267	4	
-	105	0	284	0	
entic	70	-6	249	6	
NUO	87	-80	267	80	
SS	176	-18	355	18	
08 V	197	-20	17	19	
20	152	-5	331	5	
	143	21	323	-21	
	215	3	35	-3	
	196	0	15	0	
	210	1	30	-1	
	174	0	354	-1	

Average Difference in Azimuths[^] and Inclinations^{*}

- Dogwood Cave = 0.6 degrees[^], excluding outlier; 1.2 degrees[^], including
- Roppel Cave = 0.6 degrees[^], excluding; 2.1[^], including
- Martin Ridge Cave = 1.3 degrees^
- Windy Slope = 1 degree*
- Colossal Cave = 0.55 degree[^], 0.25 degree^{*}; loop closed in Colossal with gross error of 0.5 feet horizontal, 1.65 vertical

Survivability Exams...

- Whigpistle Cave, KY
 - Pony packed in Otterbox and Drybag, padded with Fleece pullover
 - Cave pack was completely immersed for hundreds of feet of cave passage
 - Attack pony survived!
- Martin Ridge Cave, KY
 - Pony packed in Otterbox and Drybag
 - Cave pack was beaten around like a normal pack is
 - Attack pony survived!
- Windy Slope Cave, WV
 - Pony packed in Otterbox and Drybag, padded with Fleece pullover
 - Cave pack was immersed, dragged, dropped, beaten up, and immersed again
 - Attack pony survived!

Useability

• TruPulse 360

- Can be hand held, but mounting on a nonmagnetic tripod is much, much better
- Pony
 - Designed to be used at arm's length. For some shots getting the laser to "settle" down is difficult. In this case, use a nonmagnetic "bean bag."
- Laser Range Finders
 - Extremely easy to use, reasonably rugged, already relatively widely used for LRUDs

Overall Assessment

Instrument	Accuracy	Precision (FSB)	Useabili ty	Calibration Procedure	In-Cave Usage	Cost	Overall
TruPulse 360	Excellent	Excellent on "good stations"	Excellent	Excellent	Poor (Instrument is not "cave proof")	\$1,600	Accurate and very easy to use, but too expensive, not cave proof
Suuntos	Excellent	Excellent on "good stations"	ОК	Very good, actually is a "correction" procedure	Excellent	\$200	Reliable, affordable, subject to blunders
Shetland Attack Pony	Excellent	Excellent on "good stations"	Very Good	Poor	Very Good	\$500	Accurate, very easy to use, but calibration is difficult

Conclusions, Digital Devices for Cave Surveying

PROS	CONS
Easy to use	Costly
Very quick, reliable data collection	Requires calibration, usually in low light (nighttime, indoors, or in a cave)
Appear to be accurate within +/- 2 degrees (mostly w/in +/- 1 degree)	Not always cave proof, must be cared for while in cave

Potential Future Directions

- BlueTooth functionality for Shetland Attack Pony
- Tools like PDA w/ Auriga may be used to update line plot in nearly real time
 - Applications would be go beyond cave surveying, could include mine surveying, search and rescue, building collapse rescue, environmental/exposure tracking, etc.

Acknowledgements

- Cave Research Foundation
 - Hamilton Valley Fieldstation
- Roger Brucker Cave Research Foundation
- Tristan Bird 12-year old Astronaut Caver in Training
- Pat Kambesis Cave Research Foundation, Western Kentucky University
- Aaron Addison Cave Research Foundation, Washington University St. Louis
- Howard Kalnitz Cave Research Foundation
- Phil Underwood Creator of SAP, United Kingdom
- Lee Ann Bledsoe Western Kentucky University
- Larry Lee NIOSH/CDC
- Brian Masney Cheat Canyon Cave Survey
- Mary Schmidt Cheat Canyon Cave Survey
- Nikki Green Cheat Canyon Cave Survey
- Charles Fox Cave Research Foundation
- Greg Holbrook Cave Research Foundation

References

- Andreatta, 2005. Compass and Tape, Vol. 17, No. 1, Issue 57, pg. 20.
- Dasher, George. 1995. Compass and Tape.
- Hoke, Bob and Kambesis, Pat. Common Blunders During the Survey Trip. Compass and Tape, Vol. 17, No. 4, Issue 60, pg 17.
- Passerby, Mark. InCaveDigitalSurvey.com <u>http://incavedigitalsurvey.com/board/YaBB.pl?num=1205624025</u> (accessed July 2008).
- Passerby, Mark. 2003. Caves.Com The Magazine.
- Laser Technology. 2007. TruPulse 360 User Manual
- Brucker, Lynn. 2008. Underground Calibration of the Shetland Attack Pony. To be published in Compass and Tape.
- Addison, Aaron. 2008. To be published
- Underwood, Phil. 2007. Shetland Attack Pony User Manual.

Questions?

